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ABSTRACT

#

SEALS; ROBERT KINCAID, JR. Nonequilibrium Plasma Boundary Layer Over a
Cathode. (Under the direction of HASSAN AHMAD HASSAN)..

An analysis of the nonequilibrium plasma boundary layer over a
cathode in the presence of a magnetic field is presented. The case
considered is that where the Debye length is less than the mean free
paths and the Larxmor radii, and where the thermal.and nonequilibrium
effects are important. The solution is obtained by matching the sheath
solution and the solution of the conservation equations of the plasma
constituents. The transport properties for a partially ionized gas in
the presence of nonequilibrium icnization and magnetic fields -are
obtained from appropriate equations derived by the thirteen moment
method.

Local similarity is assumed, and the problem is solved numerically
using an integral method on an IBM Model 360-75 digital computer.
Results are presented for a range of values of magnetic fields and axial
distance and for two values of wall temperature. The results indicate
that the heat flux at the wall, the current density, and the electron

temperature all tend to increase with increasing magnetic induction.
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INTRODUCTION

This study is concerned with the plasma boundary layer over the
cathode of a plasma accelerator. The main purpose ' of this investigation
is to gain insight.inte the various leoss mechanisms over an electrode
and to study the effects of various parameters of the flow on such
guantities as the heat transfer and the current densities near the wall,

Several investigations have been made regarding the boundary layer
in the internal flow of a compressible plasma. Kerrebrock (1961)
considered an equilibrium magnetohydroedynamic boundary layer in an-
accelerator with a constant free stream temperature and cooled walls.
Due to a low conductivity near the wall, he predicted a considerable
amount of Joule heating which would result in a large temperature gradient
and large heat fluxes. The Hall effect was neglected, and the electron
temperature was assumed to be egual to that of the heavy particles.
Local gimilarity was also used. Oates et al. (1962) considered an.
elevated electron temperature which was determined'frem a simple energy
balance rather than from a complete electron energy equation. He found
that the values of the conductivity were increased near the wall over
those predicted by equilibrium theory, and thus the Joule heating was
greatly reduced, Hale and Kerrebrock (1964) considered the laminar:
compressible boundary layer on the insulator walls of an MHD:- channel,
They also used local similarity, but they did include the Hall effect
in the Ohm's law. The nonequilibrium effect was taken into account by
using a coenductivity proportional te the current density rather than by
accounting for the electron temperature behavior. They predicted large

current concentrations that would increase the wall shear and heat



transfer greatly over what would be the case for a normal boundary N
layer. In all of the above investigations there was no need to consider
the sheath structure. Sherman and Reshotke (1969) considered the
nonequilibrium boundary layer along an.insulator wall. Their analysis
allowed for an electron temperature different from the heavy particle
temperature by taking into consideration the complete electron energy
equation. However, chemical nonequilibrium effects were not included,
and the Saha equation with .the temperature replaced by the electron
temperature was used- to predict the electron number density. When the
conmplete electron energy equation is employed, one has to consider the
sheath structure to obtain the necessary boundary conditions on the
electron temperature. In their work Sherman and Reshotko (1969) assumed
that the electron energy flux was continuous at the sheath edge. The
free molecule expression for the electron energy flux was obtained

from a simple sheath model which did not take surface effects into.
consideration. The Hall effect and ion slip were .included in the
generalized Ohm's law, but all the gradients were assumed negligible.
They showed- that the velocity and heavy particleytemperature profiles
were influenced slightly by changes in the electron temperature; on the
other hand, small changes in the wall temperature influenced the electron
temperature significantly. Cott (1970) alse considered the boundary
layer over an insulator and took into consideration finite ionization
rates. He assumed a cold wall which was fully~catalytic. He concluded
that thermal nonequilibrium can be important in long channels, and that
the Hall effect should not be neglected. However,.the operation of the
device considered in his study was not noticeably affected by

nonequilibrium or the physics of the sheath.



In addition to the approximations previously mentioned, all of
the references cited utilized flux vectors which were based on.the mean
free path methed., The present investigation employs a model which
removes all the above. approximations. It incorporates the sheath model
developed by Hassan (1968) which allows for emission, reflectioen, .
surface ionization, and incompiete accommodation. In addition, finite
ionization and recombination rates which play an impertant role in
plasma accelerators are taken into congideration. The flux vectors
for a partially ioenized gas in the presence of magnetic fields and
nonequilibrium ionizatien are ebtained from appropriate equatiéns
develeped by Aliyevskiy and Zhdanov (1963) using Grad's "13-moments"
method. Thus rigorous kinetic theory expressions replace the approximate
expressions derived by the mean free path methed.

The calculations presented here are for a plasma boundary layer
over a plane cathode in the presence of a magnetic field. The boundary
layer approximations are used te reduce the governing equations to a
set of six simultaneous nonlinear partial differential equations. The
assumption of local similarity reduces these equations to a set of
ordinary nonlinear differential equations. The over-all heat flux, the
electron current density, and the over-all current density are reguired
t® be continuous at the sheath edge. This requirement, aleng with the
free stream conditions, a ne-slip conditien at the sheath edge,; and
a given wall temperature, result in a two point boundary value problem
for the six simultaneous nonlinear differential equations. The solution
to the problem is obtained by writing the system in integral form and
solving the resulting integral equations by iteration. The computations.

were carried out using an IBM Model 360-75 digital cemputer.
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The main symbols utilized throughout this thesis are presented in,

Appendix A.



THE INTEGRAL FORM OF THE GOVERNING EQUATIONS

This study is concerned with a plasma boundary layer over a plane

cathode. The geometry of the problem is shown in.Figure 1.
governing system of equations and the transport. property relations
are developed in Appendix B and Appendix C, respectively. The sheath

selution, which gives the boundary conditions at the sheath edge, is

developed in. Appendix D,

The momentum equation, given by equation (34B), can be:integrated

formally; the result can be expressed as

s
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The boundary conditions used for this integration are

daf

£F=32
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il
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at n=20
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at n=ng . (4)

Equation (33B), which is the electron conservation equation,. can be
integrated formally with respect to n once to give a relation for the
electron diffusien velocity. The resulting expression is combined with
the diffusion velocity relation provided by equation (30C). The combined
expression is then solved for the derivative of the degree of ionization

and integrated formally to give

s
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The sheath selution provides the necessary boundary condition on. the
current density at n = 0.

If equation (35B) is combined with equation (32C), an expression
for the derivative of the dimensionless. temperature can be obtained,

If this relation is then integrated fermally using the boundary conditien

g=g, at n=20 (6)

the result is given by
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Since the neutrals are in good contact with the cathode, the temperature
at the sheath edge. is assumed equal to the wall temperature:. The heat

flux at n = 0 igs determined from eqﬁation (7) and the condition that

g=1 at n = ng (8)
and is given by
s
-1 -1
g (0) = {f (vp ) " ax} {1 =g
0
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0 0

If a similar procedure is used with eguations (36B) and (31C), an
expression for the derivative of the dimensieonless electron temperature
can. be obtained. Requiring centinuity of the over-all heat flux between
the boundary layer and the sheath provides the necessary boundary
condition on the electren temperature at n = 0. This requirement and

the cendition that



6 =1 at n = na

provide the necessary boundary conditions to integ

(10)

rate the electron

energy equation formally. The resulting expression is
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In this study the over-all current density is
throughout the boundary layer and is assumed to be
current density. This allows equation (38C) te be
field strength. This completes the casting of the

inte integral equations.
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taken to be constant
equal to the sheath
solved for the electric

differential equations
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METHOD OF SOLUTION

The selution of this problem involves solving six integral
equations. These are equaticns (L, (2), 3), (5, (7), and (11).

In order to solve these equations, several quantities must be specified.
First, the free stream conditions must be given. Values of the wall
temperature, the magnetic inductien, the position of the station under
consideration, and the various surface parameters must be specified
also.

The method employed here is that of successive substitutions.
Initial values of £, o, g, and 6, along with the required derivatives,
must be assumed for the entire n-range of zero to Nge Given these
initial profiles, the integral equaticns can be used to generate a new
set of profiles. This procedure is repeated until a certain accuracy
criterioen is met. For this work the reguired accuracy was 0.5 X 10-4.

When one employs the integral method,_a value must be specified for
Nge At this value of n, all the properties approaéh their free stream
values, and their derivatives approach zero. An Ns of 6 seems to meet
the above requirements. However an s of 5 gives almost identical
values for the heat flux at the wall. Because of this and because of.
the increased computer storage and time requirements for an Ns of 6, all
the results presented here are for an Ns of 5.

The actual procedure is described next. The initial profiles must
be chosen first. The Blasius solution is used to give initial profiles
for £ and its derivatives. The initial temperaturefprofile is determined
by choosing a polynemial which meets the boundary conditiens and which

gives a shape similar to the temperature profiles in previous work such
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as that by Sherman and Reshotko (1969). Initially the electron
temperature profile is chosen to be identical te that of the gas
temperature. Various profiles for the degree of ionization are used
initially using a trial and error procedure. It appears that the
problem is fairly sensitive to the initial selection of profiles.

Unless the initial profiles, particularly that of the temperature, are
reasonably similar to the correct solutien, the problem tends to be
unstable. Considerable effort is required toc obtain a solution for the
first case. After obtaining any first case, however, subsequent cases
can be obtained by making small increments in the variables of interest.
Given the initial profiles, the sheath solution is used to give the
current density. Then the various integrals are evaluated using, in
this case, a three point integration formula. Before one can proceed
further, the value eof 60 must be determined. This is dene as follows.
Equation (9) gives the value of the heat flux at n = 0. Using this
value and requiring the value of the heat flux obtained from the sheath
solution to be the same enables one to determine a value for 60 by some-
iterative procedure. This value of the electron temperature is then
used in equation (12) to generate a value for the electron heat flux at
n = 0 and to compute a new current density. Thus all the gquantities on
the right-hand sides of the integral equations can be determined. New
profiles for the desired variables are obtained, and the process is
repeated until cenvergence is reached. The derivatives. of the various.
properties are determined from the expressions for these properties

before the next iteration is performed. For example

n

dg _ -1 _ oy Ga_ 88
= (1) a0 vy vy g Yy gt Fy 0 axl . (3

0
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RESULTS AND DISCUSSION

There are numerous parameters in this problem whose effects might
be of interest. However, the complexity of the problem makes it
impractical to investigate all of them. In this investigatioen three
parameters are chosen for study: the magnetic inductien, the independent
variable &, and the wall temperature.

The calculations presented here are for an argon plasma and a
tungsten cathode. The values used for the ionization potential of argon

and the werk functioen of tungsten are

0.2523 x 10" ergs

~
1}

15.75 electron velts

0.7273 x 10”1t ergs . (14)

4.54 electron volts

£
]

The cgs-esu system of units is employed throughout.

There are several parameters whose values must be stated in order
te begin. the calculations. The various reflection coefficients, the
accommedation ceefficient for electrons, and the potential drop in the

sheath region are chosen as:

e = g = g = g 0.01

0,1 ©,1 ©,2 ©,3

Bo,1= Bw,1 = Bs,2 = Bu 3

0.10

1.2484 electron volts = 0.2 X 10“ll ergs .

Yy = 0.3 & (9, = )
(15)

The free stream conditions are taken te be
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p& = p= 3,75 mm of Hg = 5000 dynes/cm2

ux = 45,000 cm/secoend
1

T. =T = 4000°K
8 es

o, = 0,12 - . (16)

For the purposes of this investigatioen, the free stream conditions are
assumed to be constant.

The remaining qﬁantities that need to be assumed are the wall
temperature, the magnetic induction, and the variable {. For constant
free stream conditions, £ is a measure of the distance along the
cathode. Two wall temperatures are used: 2500°K and 2900°K. The
magnetic induction is allowed to range between zero and 1000 gauss;
£ is varied between 1 X 10—6 and 2 Xx 10_5, the latter value corresponding
to an axial distance of approximately 1 cm.

The assumption eof local similarity will be discussed first. When

the heat flux at the wall has the simple representation
q,= - k =— at v =20 (17)

one obtains, after using the transformation introduced in equatien (21B),

pu

X
q, =" 5k-g—T- at  n=o0 . (18)
veg "

It can be seen that for similar solutions the heat flux at the wall will

vary inversely with the sguare root of £. Thus, the plot ef\/g 94,
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versus £ given in Figure 2 is an indication of the accuracy of the local-
similarity assumption. Despite the fact that the expression for q,
given by equation (32C) is much more complicated than that given by
equation (17), it is evident from Figure 2 that, for the range of
parameters considered, local similarity is not a bad approximatien.

Figure 3 shows.the variation of the electron temperature at n = 0
with £. Figure 4 illustrates the variation of the current density with
£€. The kehavior of both the electron temperature at the sheath edge and
the current density can be explained from the regquirement of continuity
of the fluxes and the expressions for the current density and heat flux
given by equatiens (1D), (2D), and (12D). Since qQ, is proportional to
/2

('I'e)3 and q, decreases with increasing &, Te decreases with £.

Similarly, since the current density is propoertional to (T3)l/2, it
also decreases with increasing £. Because the current density is
primarily made up of the electren current density, one.would expect it
to be negative for a cathode. However, the values of current density
shown in Figure 4 are all positive, corresponding to a net flux of
electrens toward the cathode. This is due to the low cathode temperature
ef 2500°K and the resulting low amount of thermionic emission. This
also accounts for the low values of current density obtained for this
wall temperature.

Figures 5 and 6 show the effect of the magnetic induction upon the
electric field and the current density. The electric field tends to
decrease with increasing B, while the current density increases with

increasing B.
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This effect cannot be explained by a simple Ohm's law of the type
j =.0E (19)

because ¢ decreases with increasing B. Thus it is apparent that the
gradients play an impertant role, and a.simplified Ohm's law, such as
that used by Sherman and Reshoetko (1969) or Cott (1970), would net be
adequate. With the general expressions used here, the current density
increases as the magnetic induction is increased. Since the current

density at the sheath edge is propoertioenal to (Té)l/2

: one would expect
the electron temperature to increase with increasing B alsoe. Figure 7
shows this to be the case. For small values of B, the electren
temperature profile is unusual and has two inflection peints. The
gradient of the electron temperature is propertional te the difference
between the power input te the electrons (§e . E) and the loss terms
resulting from collisions with the heavy particles and heat cenduction.
When B is small, one cannot single out a dominating mechanism in a given
region of the boundary layer. ©On the other hand, when B is large the
power input term dominates in the region next to the sheath and losses.
dominate the outer region. Figure 8 shows that the heat flux at the
wall alse increases with increasing magnetic induction. The effect is
small for the lower values of B, but it is moere pronecunced for values
above 500 gauss. This follews from the consideration that-qw is

propertional to (Te)3/2

, and Té increases more rapidly for large values
of B. For the cases investigated here, the magnetic induction has

little effect on the wall shear.



19

A
£=0.5x 107>
T = 2500°K
w
5T
g = 0, 400, 700, 900 gauss
4 4
34
o
2 .
1 -
—N\p—t— — t >
1.0 1.2 1.4
6 = Te/Te6

Figure 7. Transformation variable (n) versus electron temperature



20

4
= o
0.5 &4 Tw 2500°K
¢ - 0.5. 5 10_5/
Can O.4 T
Lol
=}
0
0
]
T
o~
50.3-- €=1X10—5 /
B
g
o
o
S -5
2 0.2+ £=2x10 —
3 -
ol
i
0.1 ¢
t t t t —>
200 400 600 800 1000
B (gauss)

Figure 8. Heat flux at the wall versus magnetic induction



21

For the 2900°K cathode temperature case, more electron emission is-
expected. Thus the current density should be negative and greater in
magnitude than for the 2500°K case, and the heat flux at the wall should
show the coeling effect of emittéd electrens. For comparison, the cases
for which & = 1 x 10-5 and ‘B =.700 gauss are chosen. For the lower
cathode temperature the current density is 3.58 amperes/cm2§ while for
the 2900°K case, the current density is -5.913 amperes/cmz. The heat
flux at the wall is 0.1009 x 109 ergs/cm2¥secend for the 2900°K case as
compared te —-0.2829 X lO9 ergs/cmz—second'for the 2500°K case. The
positive value of the heat flux away from the cathode indicates that
electron emission is beginning to deminate. The effect of cathode
temperature upon the electron temperature profile is shown in Figure 9.

For the 2900°K case the electron temperatures are. considerably higher.

This can be explained by looking at. the simplified electron energy

equatien
m n 2kT
T > 2 e 't (11) e
o PR = o ——— amm— - = .
i, " E 3e[2 (,m)zet] —= 3k (T_-T) =0 . (20
t#e t e

Since Te z T and the current density, cemposed primarily of the electren
current dengity, is greater for the higher cathode temperature,
examination of eguation (20) shows that the electron temperature must:
be larger for the 2900°K case. The influence of the cathode' temperature
on the profiles of the temperature and degree of ionization is shown in

Figures .10 and 11.
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SUMMARY AND CONCLUSIONS

The assumption of local similarity appears to be 'a fairly geod one
for the cases used in this study. The guantity /E'qw varies only
slightly with £, indicating that local similarity is an adequate
approximation. The heat flux at the wall decreases with increasing

£ because of the () */2

proportionality. As a result both the current
density and the electron temperature at the sheath edge decrease with
increasing £ also.

The variation of the current density with the magnetic induction
indicates that gradients play an important rele. The current density
increases with B, while the electric field strength and conductivity
decrease. This cannot be explained if gradients are ignored in Ohm's
law. Since the current density increases with increasing magnetic
induction, the heat flux at the wall and the electron temperature
increase also. The maghetic induction has little effect on the wall
shear for the cases discussed here.

For the 2500°K cathode temperature case, there is very little
thermionic .emigssion. Thus the current density is low and is dominated
by electrons going toward the cathode. The heat flux is thus positive
inte the cathede. Raising the cathode temperature to 2900°K increases
the cathede emission, and the current density becomes larger and
negative, indicating electrons leaving the cathode. Thiss has a cooling
effect. The electron temperature at the sheath edge is greater for the
2900°K case.

Further possibilities fer investigation are numerous. Higher

cathode temperatures should be used in order to obtain higher current
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densities. The effects of varying some of the sheath parameters would
be of interest. Also different free stream conditions could be.
investigated. Finally, the assumptien of local similarity could be:

relaxed.
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Appendix A. List of Main Symbols
guantity defined in eqguation (23B)
quantities defined in equations (10B)
magnetic inductien
quantities defined in egquations (10B)
electric field strength
electronic charge
Blasius variable defined by equations (22A) and (233)
dimensienless temperature
specific enthalpy
Planck's constant
quantity defined by equation (12B)
Ionization petential
current density
Boltzmann's constant
mass
particle number density
pressure
heat flux
electron rate of productien
temperature
electron temperature.
velocity
work functien of the cathede
species diffusioen velocity
collision cress sectien

degree of ionizatien

28
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guantity defined by equatien (23B)
coefficient of specular reflection
coefficient of diffuse reflectien
coefficients defined by equatiens (33B)
transformation variable defined by equation (213)
transformation variable defined by equation (21A)
dimensionless electron temperature
coefficient of viscosity defined by equation (2B)
stream functien
viscous stress tensor
density

potential

Subscripts
iens, electrons, and neutral particles
axial distance
normal'directien
refers to the wall
refers to free stream conditiens
refers to wall in sheath solution; otherwise, the sheath edge
ioens, electreons, and neutral particles

refers to sheath edge in the sheath solution

Superscripts
refers to a vector quantity

refers to a tensor
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Appendix B. Governing Equations-

The governing equations for this problem are taken as a conservation
of momentum equatien, the conservation of species equations, an electron
energy eguation, and an over-all energy equation. The number densities
of the ions and electrons are assumed to be approximately egqual. If the
over-all continuity equation is used, then only one.conservation of
species equation is required; and this is chosen to be the electron
conservation equation. The equations used are in the form of Aliyevskiy
and Zhdanov (1963) in which Grad's "13-moments"” appreach is employed.

The general forms of these governing equations are given below:

9p
24V ep u =p (1B)
ot e e e
op >
5t + V pu = 0 (2B)
-> ->
Du -> -> ->
P==+Vp+Vern=(3xB) (3B)
Dt
DH DB, g .34y ke ] (4
° ot~ bt ! ”ikaxi' J )
3z, 5 3 AP (2)
5 u Vpe + > Pe Veus+V q, E Je + R.e (5B)

where pe and p are the electron and over-all densities, ue and u are the
electren and over-all velecities, 55 is the mass rate of production of.
->
electrons, pe and p are the electron and over-all pressures, ; is the
viscous stress tensor, ?e and 3 are the electron and over-all current

+
densities, B is the magnetic induction, H is the specific enthalpy, and

> -> ) >
9 and g are the electron and over-all heat flux vectors. E* and Réz)
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are given by

-> > > >
E* = E+ 4 X B (6B)
m 2k T
2 __ 2 e _ e _(11)
R =-%n ) Qn nt) 3k (Ty = T) [ ——=2] (7B)
t#e t e

where E is the electric field strength, n, and,mt are the number density

and mass of species "t", k is the Boltzmann censtant, T_ is the

t
s gt (11)
temperature of species "t", and Zst

is a collision cross sectioen for
collisiens between particles "s" and "t".

Assuming steady two dimensional flow, the governing equatioens

become
o u )+ u )= (&8)
3% Pe e )Y Pe e pe
X Y
& wuy+Z (puy=o0 (98)
ax P Yy 9y P v
8ux Sux 3p Bﬂxx wa 5>
pux ox + puy Ay * ox * ax * oy = (3 xB)x
u u o an om N
pu, 5;¥-+upuy 3§z-+ 5y +,—3§¥-+ —3§X-= (§ xB) v (10B)
g 3 du ou
pu —a-}i-].pu gﬂ_u éE—u EE+—"§'+&5+7T"—'§+1T .—l
X 0X y oy X 99X y 3y ax dy: | XX 9X Xy OoX
ou au
p 4 Yy =z e
+ W, =+ = E¥* - 118
Xy 9y yy 9y 3B
9q °q
3p p Ju 9u e e
3 —& —8) 43, (X, X . S A P (2)
2 (ux 9x * uy Sy;) * 2 pe(Bx + oy * ox * y E Je * Re (12B)

where x and y refer to the axial and normal directions, respectively.
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Introducing an electron diffusien velocity ﬁe' defined as
- ->
W =u -u (13B)

and neglecting the x-variation of the diffusion velocity as compared to

the y-variation, eqguation (8B) can be written as

3
n u) + —;-(n u) + —;(ne We ) =R (14B)

where Re is the rate of preduction of electrons. Expressions for the
—)

-5
components of the stress tenser m are obtained from Appendix C and are

given below:

" Bux ou
Tex = 3‘(2 ax Ay )
" Bux ou
Trxy = 5'(8x Jdy )
Ju ou
o =E(2«....¥____3_‘. (15B)
yy 3 Ay ox ° ‘

In order to simplify the governing equatiens, a boundary layer type

analysis is used. The following dimensioenless guantities are introduced:

u* = ux/ux v* Lu&/éuk
) 8

2
P/P s uxs PouE = /g i R, =pgu L/ug  (16B)
_ §

~e
-
~e

p* =p/ps 1 P*

where L is a characteristic length, & is the boundary layer thickness,
Re is the Reynolds number, and the subscript § refers to free stream

cenditions. An order of magnitude analysis is performed using these
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gquantities, and small order. terms are neglected. If one uses equations
(10B) and (15B), a mementum eguation of the follewing form is obtained:

au 3u au

X Yy .8 _ 9 X > > |
Puy 3% + puy oy + ax oy (u 59‘) + (3 % B)x . (17B)

If these operations are performed on eguation (11B), the energy equation

takes the form:

3 du,_ 2
ki ) O AN AL S I
P 3 TP Sy T hy % ax P (gy ) +Er 3. (18B)

In deriving the above expression, the x-~variation of the heat flux is-
neglected with respect to the y-variation. In a similar manner the
electron energy equation becomes

op op ou du
e e X
(ux Y §§—) +

Y _ Zx o 2 (2)
E o * Ry . (19B)

ojw

Equations (9B), (14B), and (17B) through. (19B) compose the set of
governing equations. If y is allowed to appreach the thickness of the
boundary layer, equation (17B) yields an expression for the pressure

gradient:

du
s e 3 x3
= (3 13)x

dp _ .
dx QG u

XS o (20B)

ls

A Levy-Lees coordinate transformation of the type

x ux y
(]
£(x)=f p.u,u. a& ; n (x,y) =—f p dy (21B)
. 2% VEE
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is introduced. A stream function Yy is also introduced and is defined by

the following relatiens:

ou =L

©

=

il
1
&

. (22B)

For ¢ = v2E £, equations (21B) and (22B) shew that

u = u — (23B)

The quantity u %;-+ uy %;-appears in several places. In the transformed

coordinate system, it becomes

2 of 3 3f 3 £f 3 (24B)

o=n/n= ni/n =1 - na/n (25B)

where ng is the species number density and n is the ever-all number

density given by
n=p/m . (26B)

Using eguation (25B) and the definition of the specific enthalpy, given.

by
=315 =2p, X
H =5 [2 p+I ne] 2% + o. (27B)

where I is the ioenizatien petential of the medium, equatioen (14B)

transferms inte
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e pf, gy, s p o (Clay. T (260
an 93¢ 9 28/ 9n 2 9n _ I ;T 2. *
psuxsué 28 H m ¢ pp6 ux6 UG

In cbtaining equation (29B) use is made of the centinuity equatien and
the assumption that the pressure is independent of n.
If equation (20B) is substituted inte equatien (17B), the transformed

momentum equation takes the form:

2 2 2 98y
w, 553, ‘(3_f+£..)___3f=[f_5._ 257 8
xg €307 3n xg “9E 28 an2 ) an ag.
u
% & [pu EEEJ
Ps uS‘(2£) an an2
> 2> T = 2
+[3xB) - (X B)XI 1/pp gu Hg . -
§ 8
(29B)
Similarly, equation (18B) transforms inte
p.u du u
BEM _ (2f £ 0m_ O Fsary _%s  *s o puya’n?
In 9g 3g  2&/ on 6 on’ dE 28 ‘ogu’ 5n2
(3 % B) ‘
: o oae 1 1%y B3
PPgu. He T 9N 05Uy Hs /32'8” pu,
S $ 8
(30B)

If the definitions of electron pressure and over-all pressure

k
Pe =00 o Te

o)
I

X )
e o (che + T) ; T =T =T (31B)



are used, the electron energy equation transforms into.

3 of 9 e of £ 3 e
2p{nag (ocT +«T)_(§:E-+E)5-ﬁ 'Te+'r)}
3(aT_ + T 3(aT_ + T du
. 5k PPe af 21T )_(£+____ft_____)_}+1_’_[pu 8
2m p 9n PY3 38 2E an p X dag
dg > T (2)
X B ) % o
_(J )x|5]£+ 0 eY=E Jg * Ry
P. U U on c 1/2 9n
6 =g 8 P Uy, M (28) Ps Uy Mg
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(32B)

The assumptien that the ien and neutral particle temperatures are equal

is also introduced.

Assuming local similarity, where derivatives with respect to £ are

neglected, but terms containing £ are retained, the governing equations

reduce  to

dn H-%a 2
;_%]-(p uiz-g-) =F (0
-:—:ll=F3 n)
%1—% (n)

where

(33B)

(34B)

(358B)

(368)
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< 2 . .
Py ) = - oy ugE - 2o 158 - 5 B
dn® pu s
x
8
0'4'96 U Hs £ 0.4:%25 m R
S da e
Fy () = I 1 o=
p V2¢ xg ¥
p u' H.f puu 3
o - by @, Fs @n® L BT et
E* 5
. X2y
ux
5.
p.u u.f
§7x."¢
o9 k/m y (3,2 3 as
Fg (M) = /o (uTe + 7/ {(2 o Ty +3 ol Te8 dn
5 2 4 2 . do dg
+ (2 or] + 3 TeT} Tt 9T T 3t
/2t %Te | df . V/3E (2)
N (s af | Y28 . .
e (aT + TJ(Jy B) an ' ou [Ey Jo *RSI
e ) X v
and where
aH _ k a8 < k I do
dn 2.5 m (a Te6 dn + T5 da ) + (2'5 m Te + m) dn
6 = Te/'I'e‘S
g = T/T6

E*=E =-u B .
y X
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(37B)

(38B)

The magnetic induction and the electric field are assumed to have the

representation:

(39B)
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The electron rate of production, which appears in equation (37B), can be

expressed as

n,n
- __ie A
Re nn. £ (Te)[l n_ K] (40B)
where .
2.g., 2mm KT -I/KT
K = 1 ; e} e e (413)
%a h
and (frem Chapman and Cowling, 1960)
1/2 o
_ (.8 -3/2 -£/kT
£ (T (ﬂme) (kTg) [ e ® g, (preat (42B)
I

where 95 and.ga are the ground state degeneracies of the ions and atoms,
h is Planck's constant, and Qi is the ienization cross section. The
calculations are carried out for an argon medium. Fellowing Petschek
and Bryen (1957), the ienizatien cross section is assumed. te have the

representation

Qi (&) = aa (g -~ I) (43B)

where, for argen, aea = 4,375 X 10_6 cmz/erg. If equations (41B) through
(43B) are used in equatioen (40B), then the electron rate of production

is given by
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1/2 2, _ kT ,k‘I‘ -I/KT
R = (2 u"‘%%”'@"ﬁ‘* e

a ]
e T ea n
e

12 eI/kTe)
mp

x {1 - , }o. (44B)
(5.718 x 1073 (1 - o) (kT_/1) 3/2
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Appendix C. Transport Properties
General expressions for the diffusion velocities, the heat fluxes,
and the stress tensor are obtained from Aliyevskiy and zhdanov (1963).
-> >
The viscous stress tensor ? is the sum of the species stress tensorS';s.
If the electron stress tensor is neglected with respect to the ion and

neutral stress tensors, and if the ion Larmor radius is large, then the

ion stress tensor and the over-all stress tensor are given by:

> -
- ->
mT=u' e
-+ -
> -
T=u € (1c)
where
PXL 100 (m)
-4 po (1 - o) /KT ,(11) . m_
L {1-0a Ty toTg 5m n 2ia  Ti Ta}/{ka
- EELi}_:Eﬁlw zi;l)) T, T, (20)
100 m :
3
and the components of € are given by:
} l-(aui . auj\ _ Gij auk 30
iy = 2 ij ox,’ 3 axy

whezre éij is the Kroneker delta. Also
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m T
T, = [gg' ]/{2 4, Z(ll) + 3,55 (1 - (:l) + 4 V2 o f——-—- (ll)}

_ (om [T _ (11) (11> / <11)
T 5 | &/i3-1 - + 3.550.2, " + 4 Y2 a }

a

(4C)

The various Zst;cross sections are given at the end of this Appendix.
The general expressions from which the diffusien velocities %s and.
the heat fluxes Es can be obtained are coupled and are quite complex,
In order to simplify these expressions, terms of the order of (me/m)l/2
or less are neglected. Also, the ion and neutral masses are assumed to

be egual. With these simplifications the transport relations can be

written as (Aliyevskiy and Zhdanov, 1963):

2 A
-> > > T ~i
- - = - - (Vp_ - =Vp) - *
el (We Wl) * aea (We Wa) Pe he ( Pa p) en .\
- EE (en, - en ) E*'— en (ﬁ’ X g) (5C)
P i e e e
N 0 o
- - = - - —— — —— - *
ca (Wa We) + aai (Wa Wl) (Vpa Vp) (en en ) E
p >
- E—-[eni (Wl xB - en (W X B)] {eC)
kp kT m
> 5 e 5 e e T > (2) >
= * — —r— o — —— - a—
he Te { m VI * 2 m3 (2 eam (l Te) e el el e Wi)]
.|.E._.(i).> xg) (7C)
m e



42 .

P
ho+b R +b h =-t*(2—vw+2 pa (1-9Ww
a ai’i ae e a 2 n ea a
m T
e (7) > >
+ mT faea_Aae (Wa We)]} (8C)
kp.
> > > 5 773 2e
= -~ * — i—— %*
hl * bJ.a a * b:.e e 3o [ve (Skp.)( i E%) ]
T mT
5 kT 97 ... N G-
* 2m (zaea (l T) Wi mT eiz,l‘ie (Wl We?]
e 7 ->
- = (h, X B)} (oc)
where

202000 - [k, 0D
ai 3 m m ia

b . = - 0.32227 &L =) [T, (11)
al m m a la

2 [k
_ _8/2p (1 -a) (e e T . o (11)
b o =~ T = & N {8.8745 - 6.4575 (Te]} T 2

b, = 0 0.3227 2% /-]-‘3 gD
ia m m 1 la

2 [kT_ 2
_ _8/2pa e e T T 3%, o (11)
b, = - 15 = (=5 o {2 - 4.25 Tt 5.625 (Te) bay oz g
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T T T
(2) _ _3 (71 _ _ ‘e (, _ e . (7" _ . e
Ay =-% 3 A =-0.8 (2.417) 7 (1 T) ;A =+l 4 1.2 ==
(10C)
and where
=3B Te / {2.6385q z(n) + /2 (1L - a) z 1)y
e 20 kT o ea
_3m (an i} (11)
=3 / {0.8 1z + 1.5166 (1L - a) 2"}
~ 3m (11) (11)
* = fkT / {1.0332 (1 - o) 2" + 1.5166a 2,
+3/2 ‘/ (ll’} (11¢)

The: quantity Ks is related to the desired

relation

S-h 5o 0
dg = 8g T 3 Pg g

The diffusion velocities also satisfy

W o+ p.W, +poW
pe e pi i pa a

transport properties by the

. (12¢)

o . (130C)

—>
If one eliminates Wa from equation (6C) by means of equatioen (12C) and

takes the dot.and cross products. of the resulting expression with

> >
respect to B to eliminate Wi x B, the ion diffusion velocity can be

written as:

. (14C)
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Similarly, using equation (14C) in equation (13C) results in

§ =% sad+c (B Ben @ x5 (150)
a. a a e a e a‘ve B ° ;

By taking the dot and cross products of equation (7C) with respect to

- - ->

B, the term he x B can be eliminated. Combining the resulting expression

with equation (14C) yields
> - > > E
h =x +aW +¢_ (W e°B)B+ ee‘(ﬁe x =) . (16C)

>
Equation (8C) is used to eliminate ha in equation (9C), and then the
resulting equation is manipulated as previously described to eliminate
+

>
hi x B. Equations. (14C) through (16C) are then combined with this

espression to give

B oei tai +o G B Bre, @ x5 w7c)
i % T %% T % We i We "8 =

Combining equatiens (15C) through (17C) with equation (8C) gives

h.o=x_ +aW +¢_ (W B B+o_ (W x= (18C)
a_ *a T %" a. e a ‘e B " '

Everything is now expressed in terms of the electron diffusion velocity.
If eguations (14C) through (l6C) are used in eqguation (2C), the following

expression for the electron diffusion veloecity can be obtained:

_ 2.~-1 _E. > 2T l. - -
W o= (1 + ub) {R + o (Bz (R B) B 5 (Rx B)1} . (19¢)

Equations (14C) through (19C) now provide the necessary relationships

> >
for Ws and qg in a general form.
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The preblem of interest here allows the various properties to vary
in the axial and normal directions and agssumes a magnetic induction in-
the transverse direction. As a result, any dot products with E are zero,
Considering this and using equation (19C) in egquations (14C) through

(18C) , the following general relations are obtained:

> > 4 2. -1 , > > By
Wo= G+ (L+o) LA +0o8) R- (oA, -DJ)(Rx SE
s =i, a (20C)
> > 2. -1 z B
hs =X+ (1 + o) {(us +8) R~ (abas - Gs)(R x Eﬂ}

s=e, 1, a (21C)

The expressions which are of interest here are those for the.
electron and ion diffusion velocities, the electron heat flux, and the.
over-all heat flux. Because of their complexity, equatiens. (14C) and.
(19C) through (21C) indicate the procedure employeé in.deriving
expressions for these quantities, while omitting the details. As an
illustration of this complexity, the complete for of the electron

diffusion velocity relation is given below:

+

> B
We-_ De [Vpa - (1 - 0a) Vpl] + De [Vpa - (1 - a) Vp] x 3

1l 2
2. Te
2. .=1 3 k i
-2 *
+ [Al (1 + ab)] { 5 m I 2][(1.+ abwere) VTe

. - *
e 1+ (were)

> >
B e > e > B

* - — - - — * - — % —
+ (were ab)(VTe X B) Vpe c PQE ab (Vpe + pOE*) X B}

(22C)
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where

= & - . = - .
b2 o Po (1 o) B / gie, F we e B/me
.me
Fie = (8 *0a )/ 1= 5 g, =1[0-0)a +~oaa;l/(1l-aq
3 aei ‘ aaea 2 gel 2
Al ='(- g'p ) %e + aei * fea. ” (aei T 1 - a)[bz - g. ) / (l * b2)
e ie.
-1l (e aei 0‘aea el 2
o = (&) " {ZpaB-% 6.+ (agy ~ 7)1+ b, / (L + 1)}
. e le
T* 5kT ( m )
o = [- 1 1--) a
e 1+ (ut* 2 me Te ea
e e)
3 kTe el b2
“ 3w i (1+-g-.-—)(l-b2w T*) / (l+ 2)}
e ie
e 3 kT ei 2
o, = I S15 —a,; b, (L+7) /7 (1+57)
1+ (w T*) e ie
e e
5kT kT g .
T 3 el 2
- * - S ) R
weTe ( m (1 T ) aea 2 m ael (1 * ) / (l + b2)}
e e ie
. oa
_ 2,.~-1 o ea
Del = [a; (1 + o)l {(1+ bqu)(aei - a)
0.9 a2 T*
- ( jI) [ = 2](l + bzab - b2m T™* + o, W T*) }
pa (m_/m * : e e e e
e 1+ (were)
2, -1 : s
= - - ——
De2 (A, (1 +a)] {(bz ab) (aei 1_a)
0.9 a:i T; ( )
- [ 1{b, — o + w ™ (L. - b,a )1} .
po (m_/m) °. . *y 2 2 b e e 2°b
e 1 + (wet ) .

(230C)



47
A similar equation for %i can be. obtained from equation (20C). If
equations (12C) and (16C) are used, an expanded equation for the electren

heat flux can be written as:

->
> B
q, = De [Vpa - (1 a) Vpl + De [Vpa - (1. - g) Vpl x §-+ De VTe
7 8 °
B 2. -1 >
- e
AT 3 *
+D, (v xg) - 1A @+ )17 {e, (Vp_ + = poE*)
10 1l
> B
e
— * —
+ c, .(Vpe + = PaE ) X B} . (24C)

2

The over-all heat flux is given by
g=3g =3 (b +2p_ W) = e, i (25¢)
qg = . g, = . g 3 p s s=e, 1, a .

If equation (13C) is used in equation (25C) and small order terms are

neglected, it can be shown. that

a = (I K Yy + g-p W s=e, i, a . (260C)

After expansion this equation can be written in a form like that of

equation (24C):

R
g=c) %, - (1-a vp] + c, [7p_ = (1 - ) Vpl x g-_f e VT
> e
+ c, (VTé X ga + CSVT + cé (VT XAEJ
R
- @ e o ) (Tp, + S pad*) - (3 o ) (Tp_ + 2 paB¥) x 2
s 1l 2 2
N = w,T* N z >
+2b) W-p) Ty (B T+ () BT xS L 2o

ia ai
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If one examines the governing equations in Appendix B, it can be
seen that only the normal, or vy, components of the various transport
properties are needed. In further simplifying the eguations, axial
derivatives of properties are neglected in cemparisoen to normal
derivatives except in the: case of the pressure. In order to have the
final equations?in terms of derivatives of the temperature, the electron-
temperature, and the degree of ionizatioen, it is necessary to eliminate
the derivatives of P, and pe(in favor of derivatives of the desired

properties. The neutral and electron pressures are defined as:

oT P
per= nekTe = aTe + T (28C)
where p is the gas pressure, which is defined by
=InkT =p = (ar +7T) (29€)
P s TP e : '

S

Taking the derivatives eof equations (28C) with respect to y and using
the coordinate transformation and dimensionless guantities introduced
in Appendix B, the normal components of the flux vecters can be obtained

in the following form:

do dg ae

Wo = Y31d@ Y VY32a T Y¥s3aqa ~ Vi
% n f n

(30C)

< do dg as _
9 Y213 tVYa2a Y Yaza T Vas (310)
y n n n
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do dg do

G = Y11 a * Y12 a * Y13 a Y1g (320)

where the ceefficients are given by

8 . pT . ;
{(T + Te) De + Te/A

2,
Yaq = ] (L + o)}
@ e+’ 1 ' B

= .[ e"’{(l"a)De+l/A

2
Y | (L + o)}
32 v2g (aT_ + 'I')2 1 . b

3k %ie
¥ {——-—[—-————-'—-—](l+awr*)/A
33 7—-——2€ 2 me 1 + (weT;)z be e 1

(1 +,ai)

+[-———Eﬁ?——21[1—a) D, +1/A

(1 + oai)]}
(aTe + T) 1

1

QT
- (- —2 101 - - 2y} 5
Y3e = ( oT_ + ACI Dez o /By (o)) gy B

1 Ys

2
1 (1 + ab)

e

g *
+mpocEY / A

pu

X
_ $ pT .
Yo = { 2,{(’1‘ + Te) De

V28 (T, + ) 7

-5 2
+ Te (n-z-pe + o + abee) /Al (1 + ocb)}

x, 6 poT

. A
Yoo = : [ ]{1 - a) D
22 V2 (ot + )2 e,

5 2
+ (E-pe + oy + abee) /Al (L + or.b)}
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pou_ T
Xs %5

__.......__..-{De _L____z.[(l_a) D
JZE 9 (GLT + T) 7

+ (%pe + ae * 0Lbee) / Al (1+ ai)]}

o, 2. .-1 5
”E:T"f"'{(l'u) De_8~ A, 1+ o)l " lo (Gp, + o)
. 2.,.~-1 (e 5
- eel} JYGB +[a (L+a)]l " {=pa (Fp +a  +08) E;}
pu :
X
8 pT ,
- [ ] (T+T) ¢
V2e (aT_ + )2 e 1
+T [2p +3I (a +08)] /A (1+a)}
e 27e s s b's 1 b
pux T paT
§ § e
—-—{c5+—----——-§[(l-oc) cl
\/25 (0T + 7P)
e
+ 2P +Z (a_+ab)} /A (L+aD]1}
2 e s s b's 1 b
pu T
s S oT
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The quantities appearing in equations. (33C) which have not been
previously defined are given below:
D = [g, (1 +,b2)]—l {[(a_+ §-p Y1 +bo)+6 (o -b )](a
e, ie 2 e 2 7e 2Db e b 2" el
*2ea 2 3 kTe aeiT;
- - — 1 - ok
Tog /A (Lol -5 = 71 11 = byugte
e 1+ (w.t*)
e e
O.Gfaei 5
— — * *
+ P, ({ae + 3 pe} {1 bzwete + bzub +_abweTe}
- 2
- X - - *
+ 8y loy - bayu th = b, - ti}) /) (14 o))

2, .-1 5
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e e
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tTh, (lag + 3o} {by = oy + w T2 + byoyu T
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L - *
+ ee {1 + bzub + abweTe @bzweTe}) / Al (1 + ub)
5kp T* 0.6 a
I 5
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where

3 kTe aeiT;
A, = = = - [-

7 2 me 1+ (w T*)2
e e

| - - %*
"bl,(biabae bie) 1 bZQeTe

w, T*
i1,

5 .)(bz + weT;]}
ia~ai
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rr————————————— 1 * . ; *
T (Bl Y T a .05
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Expressions. for the electren current density je and the over-all

y
current. density jy are. needed also. These quantities are defined as

= . &
e ne We = o pa W (36C)

.
il

(37C)

wl
i
™
L.}

i
glo
hel
%]
=

[N
I
=

Equations. (30C) and (36C) combine to give the desired expression for the

electron current density. .If equation (20C) is expanded with s i

using the same procedure was was used in obtaining equation (19C), an
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expression for Wi can be.obtained, If this expression is combined with

y
equations (30C) and (37C), the over-all current is given by

pu

X 'dp
s e § a 2 2, -1
j,==pa (=—=) {(D, =D ) 3=+ [ (1L+a)(L+b)]I " {1
y m [Sg‘ 11 e, dn 1 b 2
g . ) dp a .1* g .
+ =1+ b ) =2+ %-E—-[ 2= g1+ H(
Yie =N e 1+ (weT;) 9ie’
+ aw T*) + b, (1 +.E§i-[a —wtr 1T By
b ee 2 gie b ee e dn
e °Tg
faee G (G -emy -0, )
-1+ Efia(b ) / IA (L+ oD (1 + D021} 3. B
‘gie 2 b 1 b 2 s

g .
+ {Cp0)? 1+ (1+ba) /A A+l @+pI]) &}
ie

(38C)

where.

dp M dp
s 138 s (39C)
ou d

dn y

xs

Various ratios of cross sections are used in deriving the desired
forms of the governing equations and. transport property equations. For
the sake of simplicity, the raties for collisions invoelving neutrals are
taken to be those appropriate for Maxwellian molecules and are-given as

(Chapman and Cowling, 1960)
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(12) (13) (22) (23)
.Z_S.E.._. = -5.. R f.S.E._.. = 2_5_ . ZSt = ZSt = 2.583 (40'C)
Z(ll) 2 ’ Z(ll) 4 ! Z(ll) Z(ll) ° °

st st st st

However, the Zétl) expressions employed in the computations are curve

fits of experimental data. For collisions between two charged particles,

coulomb interactions are assumed, and in this case (Chapman and Cowling,

1960)
Z(l2) . Z(13) Z(22) Z(23)
st. =1 . st = 2 N st - St = 2 (41C)
Z(11) ! Z(ll) ! Z(11) Z(ll) ’
st. st st st
(11) . . .
are given next. Following Spitzer. (1962)

The cross. sections ZSt

Zéil) for argon can be written as

zfil) = (2.96 x 10'16}(—5—32 an {(3.441 x 10-)(~353 /7 (pa ga} m® .

i kT
e

(420C)

Using data from Cramer (1959) and the curve fit suggested by Cloney

(11)

. can be written as
ia

et al. (1962), 2

21 = 16,383 x 1071° {1 - [¢n (7.88 553}[0.1302
ia I

- 0.00648 in (7.88 £)1} ® . (43C)

Using data from Barbiere (1951) and a best straight line curve fit,

Zéil) can be written as
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5 (11)

T .
BU 0,283 x 10710 (5.82 + 4.4504 (=2 - 1.27655)} ex® . (440)

10

The neutral-neutral collisiens are assumed to. follow the Lennard-Jones.
potential. At the high temperatures of interest here, the repulsive

part of the potential dominates; and thus, follewing Hirschfelder et al.

(11)

(1954), Zaa

for argon is given by

211 = 5 528 x 10710 {(?)_1/6} m® . (45C)

11)
aa
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Appendix D. Sheath Solution

The sheath selution used here considers a collisionless cathede
sheath consisting of ions, electreons, and neutral particles., These
particles may be incident, diffusely reflected, specularly reflected,
trapped, or emitted. The derivation is that of Hassan (1968) and will
not-be repeated'here. In this weork, however, the temperature of. the
ions and neutral particles in the sheath is taken equal to the wall-
temperature. Alse the minimum drift velocity of the ions is taken to
be zere. Letting the subscripts 1, 2 and 3 refer to ions, electrons,

and neutrals, respectively, the current densities in the sheath are

given by
kTO -a
iy = -e E;H-{al (1 - am'l) - (bl + dl) e } (1D)
kT -a/8,
_ 0 _ i, 2 _
Jp=eam iy -0 = 8e ) /8 50 dy} (2D)
where
a=e (¢, - ¢5) / kT,
1,27 %_ 7 To
Oq,2 = 81,2 v ¥y (1= 8; ) (3D)

and where o_ 3 and B 3 are the coefficients of specular and diffuse
14 14

reflection for particles "§" coming from the sheath edge, Y, is the

accommodation coefficient for electrons, (¢_ - ¢O) is the potential drop

across the sheath, m and me are the masses of an atom and an electren,

e is the electronic charge, and k is Boltzmann's constant. The
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subscripts i and d refer to incident and diffusely reflected particles.

The' quantities dl and d2 are given by

-a

= 2 - - - -

dy =g lag [ -ay D@ -ag, — 8 ) +e” By, (1-o,,)

-5,y (L= oy

-a
tagll-a, 3-8, 30l -ay -8By, (1-e )1}
2m kT _ 3/2 -ew/kT
4, =4 (53 e 0 (4D)
h
where
4 _ _ _-a _ _ -a
k=1 aO,lA 80’1 (L-e ) +v (1 uo’l 50,1) e
e(Il - w)/kTo -1
v=1{2 (1L + erf Va) e } (5D)

and where h is Planck's constant, I is the ionization potential of the
medium, and w is the work function of the cathode. Theusign convention
is such that particle flux away from the cathode is considered positive.
The over-all current density can be found by adding equations. (1D) and
(2D).

The heat flux for a particular species "3j" is the sum of the heat
fluxes relating to those particles of species "3j" which are incident
upon the cathode, those which are specularly and diffusely reflected,

and those which are emitted. Thus

ta . (eD)

95 = 79,3 T 49,5 F qdlj e,]

J 1,] S,]
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where i, s, d, and e refer to incident, specularly reflected, diffusely
reflected, and emitted particles, respectively. Following the procedure-

of Hassan (1968)
g = -&i-e» de, + (kT, . - e.¢ ﬁ 7D
i j f j j ( ilJ j ) j ( )

where,r'aj is the flux of particles "3j". Using the distributien functions
of Hassan (1968), eguations (6D) and (7D) combine to give the following

relations:

kTO
g, = - kT, \’_27&1' faj 12+ e (¢, - ¢)/kT(] (1 - a4

- by e 2 [2+e (¢, = ¢)/KT,] - 4y e 2+ e (¢, = $)/kT 1} (8D)

kTO —a/ei 2
q = - kTO E;E-{az [26i ,te (¢ - ¢O)/kT0](1 - “w,z) Mei’z e !
- /ed’z [26d'2 + e (p - ¢0)/kT0] b2
- [2+e (¢ - ¢5)/kT,] dz} (9D)
kTO
qy = = 2KTg |5— {(1-a 3) 83 = by - d3} (10D)

where ¢ is the potential and where.

a, = dl/v

o
i

Xla +,>\3a3 ; b, =B a

/ "a/% ,2
= 4
by =a, (B, 5 (0;,2/%,2 ¢ }
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_ - _ .-a, -1 _
M=oy =By W= g, ) (- ag )
V -a
Tk Bo,1 (t e M- ) dmag g = By o)
-a
+e By {1-0, 3-8, {1-ay DI}
= 2 -g 2 - -
3= By, L-eHl-a, -8, ) (11p)

If one sets ¢ = ¢ at the sheath edge and ¢ = ¢o at the wall, equations

(8D) threugh (10D) give the following:

-a
qlm = - OM T {1 - am'l)(z + a) a - e (2-+<a)(bl + dl)}
+ 3, (I - w)
-a/0,
- - 0 372 i,2
qzm = 2ﬂm {@ - )(ei,Z) e a,
o372, .
(0g,2) by = d,} = Jyw
= - ..2 - -
01‘3(,u = - 2T, [5— {1 -0, ,3 a, (b3 + d3)} (12D)
q = — 2kT ——9 {(1 -« a, -e 2 (b, +4d.)}
1,» 0 m ,l 1 1 1
kT R -a/e 2
= e -~ l
%G, = " T 2mne tA mag ) 8y, (285, % @) e 22
- /ed'Z (29d'2'+ a) b2__ (2 + a) dz}
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where the quantities jl (I - w) and j2w are the surface contributions to.
the heat flux.

All the expressions presented thus far depend upon three undetermined
quantities: ayr 8y and a,. These quantities are determined by

specifying the following:

n n
oo 200 o
o =1 ’ S T—a (14D)
200 3o
P = KT, I n; 4 ei’j (15D)

where n, 3 are the various number densities for species "j", o is the
’

degree of ionization at the sheath edge, and p is the pressure at the

sheath edge. Using the expressions of Hassan (1968) for the number

densities, equations (14D) and (15D) give

1l -0
3y =Ry (Kyg =TT xgy) /o(xyy Xgp - X5 Xg) (16D)
a, =n (l 2 X - x..) / (x X - X X..) (17D)
3 200 o 11 13 11 733 13 731°

n l1-o0 l-a
ay = Ay, + %y, Iyy) (%, o ¥a1) t ¥y o xpy

-1
x_ .} {E%—

T X301/ (®pg By - xpg xg,

fe]]

2 a 1l -0
5= e (exfc va) [1 + Y1y (x33 -—E——'X3l)

1l -0
tyyy (g xyy = xp)1 /Gy mgy - xpg xg)) (18D)

where
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+
+
xll = 0,
x3l = 0,
k33 = 0.
Y13 = 0
Y22 = 8
+
Y33 = 0-

The quantities Gl, o
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{erf ,/at/ei'2 +0.5 (1 +a, ) erfc /.-a;/ei'2

1 1
a(zi— -
0.5 8 0. ,0. . e M2 L2 e Sase. )}

©,2 ir2 dlz d,2 )

2ﬂmekT0 3/2 (a - ew/kTo)

2 — e erfc Va
h

-a -a
5 {1 + % 1 + Ale +vd, e }

-a
5 {A3 + vd3} e ; X14 = 0.5 dl

51l +a, 3% By 3 0,3%,3 * %)

5{lL+a_ ., +A e 24 o, (ve"a

1 1 + 1)1}

5 {erf /a/ei,2) + 0.5 {(1 + “w,z) eilz {exfc Ja/eilz)

a(el _ el }

4,2 i,2
By 2 /ei’zed'z (erfc /a/ed’z)}

14

o

-a -a
5 {A3 e +1l+a_,+8 + 0 (ve

3t Byt Oy + 1)} (13D)

o and 03 are given by Hassan (1968).



